Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Rev Neurobiol ; 158: 373-393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785152

RESUMO

The rodent medial prefrontal cortex (mPFC) is typically considered to be involved in cognitive aspects of action control, e.g., decision making, rule learning and application, working memory and generally guiding adaptive behavior (Euston, Gruber, & McNaughton, 2012). These cognitive aspects often occur on relatively slow time scales, i.e., in the order of several trials within a block structure (Murakami, Shteingart, Loewenstein, & Mainen, 2017). In this way, the mPFC is able to set up a representational memory (Goldman-Rakic, 1987). On the other hand, the mPFC can also impact action control more directly (i.e., more on the motoric and less cognitive side). This impact on motor control manifests on faster time scales, i.e., on a single trial level (Hardung et al., 2017). While the more cognitive aspects have been reviewed previously as well as in other subchapters of this book, we explicitly focus on the latter aspect in this chapter, particularly on movement inhibition. We discuss models of prefrontal motor interactions, the impact of the behavioral paradigm, evidences for mPFC involvement in action control, and the anatomical connections between mPFC and motor cortex.


Assuntos
Cognição , Córtex Pré-Frontal , Animais , Cognição/fisiologia , Aprendizagem , Córtex Pré-Frontal/fisiologia , Roedores
2.
Front Syst Neurosci ; 11: 27, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553206

RESUMO

Simultaneous recordings and manipulations of neural circuits that control the behavior of animals is one of the key techniques in modern neuroscience. Rapid advances in optogenetics have led to a variety of probes combining multichannel readout and optogenetic write in. Given the complexity of the brain, it comes as no surprise that the choice of the device is constrained by several factors such as the animal model, the structure and location of the brain area of interest, as well as the behavioral read out. Here we provide an overview of available devices for chronic simultaneous neural recordings and optogenetic manipulation in awake behaving rats. We focus on two fixed arrays and two moveable drives. For both options, we present data from one custom-made (in house) and one commercially available device. Here we provide evidence that simultaneous neural recordings and optogenetic manipulations are feasible with all four tested devices. Further we give detailed information about the recording quality, and also contrast the different features of the probes. As we provide detailed information about equipment and building procedures for combined chronic multichannel readout and optogenetic control with maximum performance at minimized costs, this overview might help especially researchers who want to enter the field of in vivo optophysiology.

3.
Curr Biol ; 27(4): 549-555, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190729

RESUMO

The ability to plan and execute appropriately timed responses to external stimuli is based on a well-orchestrated balance between movement initiation and inhibition. In impulse control disorders involving the prefrontal cortex (PFC) [1], this balance is disturbed, emphasizing the critical role that PFC plays in appropriately timing actions [2-4]. Here, we employed optogenetic and electrophysiological techniques to systematically analyze the functional role of five key subareas of the rat medial PFC (mPFC) and orbitofrontal cortex (OFC) in action control [5-9]. Inactivation of mPFC subareas induced drastic changes in performance, namely an increase (prelimbic cortex, PL) or decrease (infralimbic cortex, IL) of premature responses. Additionally, electrophysiology revealed a significant decrease in neuronal activity of a PL subpopulation prior to premature responses. In contrast, inhibition of OFC subareas (mainly the ventral OFC, i.e., VO) significantly impaired the ability to respond rapidly after external cues. Consistent with these findings, mPFC activity during response preparation predicted trial outcomes and reaction times significantly better than OFC activity. These data support the concept of opposing roles of IL and PL in directing proactive behavior and argue for an involvement of OFC in predominantly reactive movement control. By attributing defined roles to rodent PFC sections, this study contributes to a deeper understanding of the functional heterogeneity of this brain area and thus may guide medically relevant studies of PFC-associated impulse control disorders in this animal model for neural disorders [10-12].


Assuntos
Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Animais , Fenômenos Eletrofisiológicos , Masculino , Optogenética , Ratos , Ratos Sprague-Dawley
4.
Methods Mol Biol ; 1165: 19-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24839016

RESUMO

We present a 3D assay for the quantification of the autophagic flux in live cell spheroids by using the fluorescent reporter mRFP-GFP-LC3. The protocol describes the formation of the spheroids from the astrocytoma cell line U343, live long-term 3D fluorescence imaging of drug-treated spheroids, and the image processing workflow required to extract quantitative data on the autophagic flux.


Assuntos
Autofagia/efeitos dos fármacos , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Gossipol/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Sirolimo/farmacologia , Esferoides Celulares/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...